ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
R.-D. Penzhorn, Y. Torikai, M. Saito, M. Hiro, A. Perevezentsev, M. Matsuyama
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1053-1056
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST60-1053
Articles are hosted by Taylor and Francis Online.
The uptake of tritium on the surface and in the bulk of copper upon exposure to a 50 % T/H mixture at 300 or 473 K was investigated using a chemical etching technique. Concentrations of tritium approaching saturation are achieved fairly rapidly in Cu even at low temperatures because of comparatively high diffusivity and low solubility of hydrogen in this material. The results were interpreted by a diffusion model. Most notorious are the very high concentrations of tritium on the topmost surface and subsurface. They were quantified by etching and confirmed by BIXS. In addition, there is evidence for tritium trapping in the subsurface region.Tritium-loaded copper specimens release tritium chronically at ambient temperature. The egress of tritium manifests in the gas phase almost exclusively as tritiated water.