ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
L. Mercadier et al.
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1049-1052
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12596
Articles are hosted by Taylor and Francis Online.
In this paper, in situ tritium measurements and control by laser techniques are presented. It is proposed to use Laser-Induced Breakdown Spectroscopy (LIBS) as an efficient technique to measure the tritium concentration in ablated material. However, LIBS could be limited due to material melting observed during ablation possibly leading to hydrogen losses. Laser ablation is shown to be an efficient process to recover the in vessel tritium if the dust produced during ablation is collected. This could be forbidden if ITER cannot be operated at high pressure. To overcome this difficulty and detritiate remote surfaces, laser heating could be applied since it generates gaseous compounds. However, inward diffusion could be expected leading to burry tritium in bulk material which is a counterproductive action. Finally, all these techniques must be embarked on remote handling system in order to explore and treat large surfaces. Obviously, this carrier is needed for a reliable and an efficient operation of the ITER nuclear facility.