ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
J. Kißlinger, T. Andreeva
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 382-386
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1259
Articles are hosted by Taylor and Francis Online.
The superconducting magnet system of Wendelstein 7-X (W7-X) consists of five identical field periods (modules). Magnetic field errors arise if the modules are not exactly identical. Even small deviations in the coil shapes of the same type or misalignments of coils or modules break the periodicity of the system and cause error field components.Simulation of the magnetic field perturbations that are expected has been done by the analysis of existing winding packages and statistical extrapolations of inaccuracies expected during assembly steps. A numerical experiment has shown that assembly errors should contribute significantly more than manufacturing errors of individual coils.Compensation of the magnetic field perturbation can be done with the help of the coil adjustment during the assembly or by the individual adjustment of all five modules. Further compensation of field errors is possible with additional coils. The existing control coils in W7-X can be used for error field compensation; however, their efficacy is limited. Therefore, solutions employing normal-conducting trim coils outside the cryostat vessel are also considered here.