ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. Kißlinger, T. Andreeva
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 382-386
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1259
Articles are hosted by Taylor and Francis Online.
The superconducting magnet system of Wendelstein 7-X (W7-X) consists of five identical field periods (modules). Magnetic field errors arise if the modules are not exactly identical. Even small deviations in the coil shapes of the same type or misalignments of coils or modules break the periodicity of the system and cause error field components.Simulation of the magnetic field perturbations that are expected has been done by the analysis of existing winding packages and statistical extrapolations of inaccuracies expected during assembly steps. A numerical experiment has shown that assembly errors should contribute significantly more than manufacturing errors of individual coils.Compensation of the magnetic field perturbation can be done with the help of the coil adjustment during the assembly or by the individual adjustment of all five modules. Further compensation of field errors is possible with additional coils. The existing control coils in W7-X can be used for error field compensation; however, their efficacy is limited. Therefore, solutions employing normal-conducting trim coils outside the cryostat vessel are also considered here.