ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
D. A. Spong
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 343-351
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1255
Articles are hosted by Taylor and Francis Online.
Recent stellarator optimization efforts have targeted transport measures such as quasi-symmetry, effective ripple, and alignment of particle guiding center orbits with flux surfaces. This has resulted in significant reductions in neoclassical losses so that, at least for near-term experiments, the neoclassical transport of particles and energy can be made small compared to anomalous transport. However, momentum transport properties within magnetic flux surfaces provide an additional dimension for characterizing optimized stellarators. The momentum and flow damping features of optimized stellarators can vary widely, depending on their magnetic structure, ranging from systems with near-tokamak-like properties where toroidal flows dominate to those in which poloidal flows dominate and toroidal flows are suppressed. A set of tools has been developed for self-consistently evaluating the flow characteristics of different stellarators. Application of this model to existing and planned devices indicates that plasma flow properties vary significantly. Comparisons across devices can aid in unfolding the interplay between anomalous and neoclassical damping effects as well as the impact of momentum transport properties on related plasma phenomena such as turbulence suppression, shielding of resonant magnetic error fields, and impurity transport.