ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Fan Li, Vladimir Barabash, Warren Curd, Giovanni Dell'Orco, Babulal Gopalapillai, Keun-Pack Chang, Steve Ployhar, Fabio Somboli
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 781-785
Safety & Environment | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12480
Articles are hosted by Taylor and Francis Online.
ITER is a joint international fusion facility to demonstrate the scientific and technological feasibility of fusion power for future commercial electric power facilities. ITER is being designed and constructed in France with support from seven domestic agencies. In accordance with the Article 14 of the ITER Agreement, ITER shall observe French Regulations. Among various existing regulatory documents the French Decree 99-1046 concerning pressure equipment and the French Order dated 12th December 2005 concerning nuclear pressure equipment formulate the requirements for design, manufacture and operation of the pressure and nuclear pressure equipment.The ITER Tokamak Cooling Water System (TCWS) is comprised of 4 primary heat transfer systems and their supporting systems. TCWS provides the cooling water to client systems for heat removal during plasma operations and provides the primary confinement for the radioactive substances entrained in the cooling water. The main sources of radioactive substances include Tritium, Activated Corrosion Products (ACP), 14C isotope, 16N and 17N isotope. The concentration of these radioactive substances is a key parameter for the classification of TCWS equipment in accordance with French regulations.The paper will describe the process for classifying TCWS pressure equipment in accordance with French Regulations.