ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
J. P. Catalán, F. Ogando, J. Sanz
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 738-742
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST60-738
Articles are hosted by Taylor and Francis Online.
The objective of the Spanish national project TECNO_FUS is to generate a conceptual design of a DCLL (Dual-Coolant Lithium-Lead) blanket for the DEMO fusion reactor. The dually-cooled breeding zone is composed of He/Pb-15.7 6Li and SiC as liquid metal flow channel inserts. Structural materials are ferritic-martensitic steel (Eurofer-97) for the blanket and austenitic steel (316LN) for the Vacuum Vessel (VV). The goal of this work is to analyze the radioactive waste production by the neutron-induced activation and the back-end of the blanket and the VV (SS316LN) materials (Eurofer, SiC, LiPb, and SS316LN). Furthermore, the radioactive waste production in the cryostat (SS316LN) and the bioshielding (concrete) has been estimated. Following the current approach to the back-end of the materials in fusion facilities, the radioactive waste has been subdivided according to the activity-level classification (EW, exempted waste, LILW, low and intermediate level waste, and HLW, high level waste) and according to the radiological complexity of operations (handling and cooling). The activation calculations have been carried out with the ACAB code.