ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
A. Robinson, L. El-Guebaly, D. Henderson
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 715-719
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12469
Articles are hosted by Taylor and Francis Online.
Currently, there is an ongoing international effort to develop and characterize W alloys that are suitable for fusion applications. In this report, five key W alloys were examined for the advanced divertor design of ARIES-ACT - the latest ARIES tokamak design. The most promising alloys appear to be W-1.1TiC and W-La2O3. At the end of the divertor lifetime (~4 years), the maintenance dose of these alloys very closely matches those of W with nominal impurities. Unfortunately, even with pure W, the divertor is not clearable, which indicates that it must be recycled or disposed of in a geological repository. The radiation damage and transmutation are expected to degrade the physical properties of any material. The radiation damage level in W is low compared to ferritic steel - a remarkable feature for tungsten. For ARIES-ACT operating conditions, transmutation of W does not appear to present a significant issue.