ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
Santiago Cuesta-Lopez, J. M. Perlado
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 590-594
IFE Design & Technology | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12447
Articles are hosted by Taylor and Francis Online.
We report non-equilibrium Molecular Dynamics simulations providing a nanoscale view for the modeling of shock wave generation, propagation and melting in single crystalline materials Fe, Ta, W, of clear interest for Nuclear Fusion Technology. Our methodology successfully uses massive parallel molecular dynamics in an attempt to cover similar times and length scales as laser-shock experiments. Response of the materials are analyzed in terms of modern atomistic visualization and evolution of their structural properties. Preliminary results point that Wand Ta behave more efficiently in terms of uniformity under shock propagation than lighter materials like Fe. This kind of materials must attract our attention in the short term as possible designs in inertial confinement fusion (ICF) targets.