ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
S. K. Combs, J. W. Leachman, S. J. Meitner, L. R. Baylor, C. R. Foust, N. Commaux, T. C. Jernigan
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 473-479
Plasma Engineering - Fueling and Diagnostics | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST60-473
Articles are hosted by Taylor and Francis Online.
A special single-shot pellet injection system that produces and accelerates large cryogenic pellets (~16mm diameter and composed of D2 or Ne) to relatively high speeds (>300 and 600 m/s, respectively) was previously developed at the Oak Ridge National Laboratory. Subsequently, a similar system was installed on DIII-D and used successfully in disruption mitigation experiments. To circumvent some operational issues with injecting the large Ne pellets, a technique has been developed in which a relatively thin layer (0.1 to 1.0 mm) of D2 is frozen on the inner wall of the pipe-gun barrel, followed by filling the core with solid Ne.A fast solenoid valve operating with a light gas (H2 or He) at relatively high pressure (~70 bar) provides the force necessary to break away the dual-layer pellet and accelerate it. The technique and the initial laboratory tests are described, as well as the implementation and operational issues for fusion experiments.