ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
W. A. Cooper, J. P. Graves, T. M. Tran, R. Gruber, T. Yamaguchi, Y. Narushima, S. Okamura, S. Sakakibara, C. Suzuki, K. Y. Watanabe, H. Yamada, K. Yamazaki
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 245-257
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1242
Articles are hosted by Taylor and Francis Online.
The three-dimensional (3-D) VMEC code has been modified to model an energetic species with a variant of a Bi-Maxwellian distribution function that satisfies the constraint B[nabla][script F]h = 0, and the 3-D TERPSICHORE stability code has been extended to investigate the effects of pressure anisotropy in two limits. The lower limit is based on a purely fluid Kruskal-Oberman (KO) energy principle (ignoring the stabilizing kinetic integral), and the upper limit is obtained from an energy principle in which the hot particle pressure and current density refrain from interacting with the dynamics of the instability because their diamagnetic drift frequency is considered much larger than the dominant growth rate. We have specifically investigated the instability properties of a Heliotron device with a major radius of 3.9 m and total <> [approximately equal to] 3.9%, where the energetic particle contribution <h> varies from 0 to 1.3% for T