ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
A. S. Ware, D. A. Spong, L. A. Berry, S. P. Hirshman, J. F. Lyon
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 236-244
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1241
Articles are hosted by Taylor and Francis Online.
This work examines bootstrap current in quasi-symmetric stellarators with a focus on the impact of bootstrap current on the equilibrium properties of stellarator configurations. In the design of the Quasi-Poloidal Stellarator (QPS), a code was used to predict the bootstrap current based on a calculation in an asymptotically collisionless limit. This calculation is believed to be a good approximation of the bootstrap current for low-collisionality plasmas but is expected to be higher than the actual bootstrap current for more collisional plasmas. A fluid moments approach has been developed to self-consistently calculate viscosities and neoclassical transport coefficients. The viscosities and transport coefficients can be used to calculate the bootstrap current for arbitrary collisionality and magnetic geometry. The bootstrap current calculations from the two codes were done for low-density, electron cyclotron-heated (ECH) plasmas and high-density, ion cyclotron-heated (ICH) plasmas for a range of configurations, and provide a benchmark for the moments code and a test of the range of validity of the collisionless code. In the configurations examined here, namely, QPS, the National Compact Stellarator Experiment, the Helically Symmetric Experiment, the Large Helical Device, and the Wendelstein-7X Stellarator, the bootstrap currents predicted from the two codes agree qualitatively for both ICH and ECH profiles.