ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Barbora Gulejová, Richard Pitts, David Tskhakaya, David Coster
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 48-55
doi.org/10.13182/FST11-A12404
Articles are hosted by Taylor and Francis Online.
Although the most complex currently available fluid-neutral Monte-Carlo plasma boundary code package, SOLPS, has been a major player in the ITER divertor design, it has not yet been systematically used for the study of kinetic phenomena such as ELM transients. This paper investigates the relevance of fluid code results for transients, in particular at the targets where kinetic effects are most manifest, by comparing power and particle fluxes at the targets from SOLPS5 time-dependent simulations of TCV Type III ELMs with those obtained from dedicated Particle-in-Cell (PiC) kinetic transport code (BIT1) simulations. Although reasonable agreement is found in terms of the absolute magnitude of total heat fluxes, the arrival of the ion pulse at the target from upstream is significantly faster in SOLPS than expected on the basis of sonic transit times (as also seen in PiC). Adjustments of kinetic heat flux limiters to render the heat fluxes more convective in SOLPS are necessary in order to correct for this discrepancy. Moreover, because SOLPS does not account for the transfer of heat from electrons to ions inside the sheath, correction terms to the electron and ion power fluxes at the targets are required in SOLPS in order to better match PiC results. However, it does not appear possible within the scope of these sensitivity studies to simultaneously achieve expected delays and ion-electron power sharing in the fluid simulations.