ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Barbora Gulejová, Richard Pitts, David Tskhakaya, David Coster
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 48-55
doi.org/10.13182/FST11-A12404
Articles are hosted by Taylor and Francis Online.
Although the most complex currently available fluid-neutral Monte-Carlo plasma boundary code package, SOLPS, has been a major player in the ITER divertor design, it has not yet been systematically used for the study of kinetic phenomena such as ELM transients. This paper investigates the relevance of fluid code results for transients, in particular at the targets where kinetic effects are most manifest, by comparing power and particle fluxes at the targets from SOLPS5 time-dependent simulations of TCV Type III ELMs with those obtained from dedicated Particle-in-Cell (PiC) kinetic transport code (BIT1) simulations. Although reasonable agreement is found in terms of the absolute magnitude of total heat fluxes, the arrival of the ion pulse at the target from upstream is significantly faster in SOLPS than expected on the basis of sonic transit times (as also seen in PiC). Adjustments of kinetic heat flux limiters to render the heat fluxes more convective in SOLPS are necessary in order to correct for this discrepancy. Moreover, because SOLPS does not account for the transfer of heat from electrons to ions inside the sheath, correction terms to the electron and ion power fluxes at the targets are required in SOLPS in order to better match PiC results. However, it does not appear possible within the scope of these sensitivity studies to simultaneously achieve expected delays and ion-electron power sharing in the fluid simulations.