ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
IAEA to help monitor plastic pollution in the Galapagos Islands
The International Atomic Energy Agency announced that its Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative has partnered with Ecuador’s Oceanographic Institute of the Navy (INOCAR) and Polytechnic School of the Coast (ESPOL) to build microplastic monitoring and analytical capacity to address the growing threat of marine microplastic pollution in the Galapagos Islands.
Kazuhiro Itoh, Yoshiyuki Tsuji, Hideo Nakamura, Yutaka Kukita
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 74-88
Technical Paper | doi.org/10.13182/FST00-A124
Articles are hosted by Taylor and Francis Online.
The instabilities of the shear layer beneath the free surface of high-speed liquid jets are investigated. Such instabilities will generate waves on liquid-metal jet targets, affecting adversely the target performance. The most unstable wave number and the spatial growth rate of perturbation are predicted with linear stability theories and are shown to agree fairly well with experimental data for water jets. The effects of fluid surface tension and streamline curvature on the instabilities are analyzed to evaluate the applicability of water data to liquid-metal curved jets. It is shown that the surface tension effects are negligible when the Weber number based on the shear layer thickness is greater than six, and also the streamline curvature effects are negligible when the radius of curvature is more than 30 times greater than the shear layer thickness.