ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
Kazuhiro Itoh, Yoshiyuki Tsuji, Hideo Nakamura, Yutaka Kukita
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 74-88
Technical Paper | doi.org/10.13182/FST00-A124
Articles are hosted by Taylor and Francis Online.
The instabilities of the shear layer beneath the free surface of high-speed liquid jets are investigated. Such instabilities will generate waves on liquid-metal jet targets, affecting adversely the target performance. The most unstable wave number and the spatial growth rate of perturbation are predicted with linear stability theories and are shown to agree fairly well with experimental data for water jets. The effects of fluid surface tension and streamline curvature on the instabilities are analyzed to evaluate the applicability of water data to liquid-metal curved jets. It is shown that the surface tension effects are negligible when the Weber number based on the shear layer thickness is greater than six, and also the streamline curvature effects are negligible when the radius of curvature is more than 30 times greater than the shear layer thickness.