ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
G. E. Youngblood, E. C. Thomsen, R. J. Shinavski
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 364-368
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12381
Articles are hosted by Taylor and Francis Online.
Electrical conductivity (EC) data for several plate forms of two-dimensional, silicon carbide composite made with chemical vapor infiltration matrix and with Hi NicalonTM type S fibers (2D-SiCf/CVI-SiC) were acquired. The composite fibers were coated with pyrocarbon (PyC) of various thicknesses (50 to 310 nm) and an outer thin (~60 m) SiC “seal coat” was applied by CVD to the infiltrated plates.The EC was highly anisotropic in the transverse and in-plane directions. In-plane EC ranged from ~150 to 1600 S/m, increased slowly with increasing temperature, and depended primarily on the total PyC thickness. High in-plane EC-values occur because it is dominated by conduction along the numerous, continuous PyC fiber coating pathways. Transverse EC ranged from ~1 to 60 S/m, and increased strongly with increasing temperature up to 800°C. The transverse EC is controlled by conduction through the interconnections of the carbon-coating network within and between fiber bundles, especially at moderate temperatures (~300 to 700°C). Below ~300°C, the electrical resistance of the pure SiC seal coat becomes increasingly more important as temperatures are further lowered.Importantly, a “3-layer series” model predicts that transverse EC-values for a standard seal-coated 2D-SiCf/CVI-SiC with a monolayer PyC fiber coating of ~50-nm thickness will be <20 S/m for all temperatures up to 800°C, as desired for a flow channel insert in a fusion reactor blanket component.