ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
T. Morisaki, S. Masuzaki, M. Kobayashi, R. Sakamoto, K. Tanaka, K. Narihara, H. Funaba, Y. Feng, F. Sardei, N. Ohyabu, A. Komori, O. Motojima, LHD Experimental Group, Y. Feng, F. Sardei
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 216-221
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1238
Articles are hosted by Taylor and Francis Online.
Confinement improvement of ~20% from the ISS95 scaling law has been observed in the outwardly shifted configuration on the local island divertor (LID) experiment. In the configuration, highly peaked electron density profiles, together with peaked electron temperature profiles, are established with hydrogen pellet injection. A steep density gradient is formed in the internal region near the rational surface of q = 2 in the density decay phase after pellet injection. The plasma stored energy or central beta value increases and reaches its maximum as the density decreases, which is typical behavior of the reheat mode. Because of the increase in the central pressure, a large Shafranov shift is observed in the electron temperature and density profiles measured with a Thomson scattering system, suggesting the formation of the internal transport barrier during the LID discharge. Such better confinement has never been seen in inwardly shifted configurations. The reason for that is discussed taking the energy and particle transport into consideration. Recent results from a modeling study with the EMC3-EIRENE code are also presented.