ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
F. Genco, A. Hassanein
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 339-343
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12376
Articles are hosted by Taylor and Francis Online.
Off normal operating conditions resulting from plasma instabilities such as disruptions, edge-localized modes (ELM), and vertical displacement events (VDE) in tokamaks are to be expected with the potential of high energy deposition on plasma facing components (PFC). This high-energy dump in short duration, will result in extremely high temperatures of the PFC leading to melting and evaporation of the surfaces. Erosion resulting from these processes is life-limiting for the PFC as well as potential plasma contamination and degradation of performance. A comprehensive understanding based on the interplay of all physical processes during plasma instabilities on the divertor plate is necessary in order to improve reliability and characterize the performance of this key component. A novel particle-in-cell (PIC) technique has been developed and integrated into the existing HEIGHTS package in order to verify and have another perspective in assessing these problems.The HEIGHTS multi-dimensional integrated models take into account different stages of the plasma material interaction and its evolution along time. The extent of the damage will essentially depend on the intensity and duration of energy deposited on PFC. Both bulk and surface damages can take place depending on these parameters. For this reason different deposition times have been considered ranging from several microseconds to tens of milliseconds in order to provide comprehensive evolution of material erosion and transport. Comparison of the newly implemented PIC methods with current HEIGHTS existing models are discussed.