ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Ming-Jiu Ni, Shi-Jing Xu, Zeng-Hui Wang, Nian-Mei Zhang
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 292-297
In-Vessel Components - FW, Blanket, Shield & VV | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12368
Articles are hosted by Taylor and Francis Online.
A direct simulation of 3D liquid metal flow in the DCLL (Dual Coolant Lead Lithium) blanket is conducted to study the distribution of pressure and velocity influenced by different material properties of FCI (Flow Channel Insert). A consistent and conservative scheme and projection method on a collocated mesh (Ni et al., J Comp Phys 227 (2007)174-204 and 227 (2007) 205-228) are employed to solve the incompressible Navier-Stokes equations with the Lorentz force included based on an electrical potential formula. As an illustration, three blanket flows have been considered: liquid metal flow in a channel without FCI, with a silicon carbide FCI and with a FCI made of conductive material. It is shown that liquid metal flows in blanket with FCI are 3D developing flows. It is verified that: MHD pressure drop can be reduced by using silicon carbide FCI; PES (Pressure Equilibrium Slot) can balance the pressure difference between two sides of FCI near the slot but the pressure difference is still very large far away from PES; conductive FCI cannot reduce MHD pressure drop. Due to the leakage of current circuit across the slot, with PES opened at one side, a strong reversed velocity is observed in PES. The comparison of velocity distribution between numerical simulation and experiment from LEVI (Xu et al., ISFNT-9, 2009) is conducted. The difference shows that further experimental and numerical analysis is needed.