ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Leo Bühler, Chiara Mistrangelo
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 257-263
In-Vessel Components - FW, Blanket, Shield & VV | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12362
Articles are hosted by Taylor and Francis Online.
Liquid-metal flows in the European helium cooled lead lithium blanket are strongly affected by the intensity and the distribution of the externally applied magnetic field required for plasma confinement. An experimental campaign has been performed to investigate the pressure distribution of magnetohydrodynamic flows in a scaled model of a liquid-metal blanket module.A variety of experiments has been carried out to asses the influence of flow rates and of the strength and non-uniformity of the magnetic field on the pressure distribution in the test-section. The magnetic field available in the laboratory is characterized by a large zone of uniform magnitude and gradients at the entrance and the exit. The mock-up has been located at various positions along the magnet axis to reproduce operating conditions in which the toroidal field varies in radial direction, i.e. it changes from the back plate to the first wall. Measurements show that the magnitude of the total pressure drop in the mock-up is significantly influenced by the strength of the local magnetic field at the manifolds, while gradients across the breeder units have minor effects. This study confirms the critical role of manifolds in determining the total pressure drop in the blanket.