ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Kazuhisa Yuki, Hidetoshi Hashizume, Saburo Toda
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 238-242
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12359
Articles are hosted by Taylor and Francis Online.
A sub-channels-inserted porous evaporator is proposed as a heat removal device of the divertor with a heat load exceeding 10 MW/m2. The porous medium is made by sintering copper particles of micro size in diameter and has several sub-channels to enhance discharge of generated vapor outside the porous medium. This porous cooling devise is attached onto the backside of the divertor and remove the heat by evaporating water passing through the porous medium against the heat flow. In order to prove the effect of the sub-channels, the heat transfer characteristics of this porous device are evaluated experimentally using a plasma arcjet as a high heat flux source. The result shows that the heat transfer performance of copper-particles-sintered porous medium with the sub-channels enables to remove much higher heat flux under lower flow rate and lower wall superheat conditions, compared with the normal porous media. The removal heat flux, 8.1 MW/m2, is 1.8 times as higher than that of the normal porous medium at a wall superheat of 50 degrees (the heat transfer coefficient, 1.6 × 105 W/m2/K, is 2.4 times as higher). The removal heat flux reaches almost 10 MW/m2 although the wall superheat exceeds 100 degrees (The wall temperature is approximately 220 degrees C. still in a fully developed boiling regime). In addition, the removal heat flux exceeds 20 MW/m2 by increasing the number of the sub-channels under lower wall superheat conditions, which proves high potential of the sub-channels-inserted porous evaporator.