ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Jeremy A. Burke, X. R. Wang, M. S. Tillack, ARIES Team
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 213-217
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12354
Articles are hosted by Taylor and Francis Online.
The current T-tube divertor design consists of modular helium cooled units. The individual units consist of a steel inner cartridge enclosed in a tungsten alloy outer structure. On top of the outer tube is a layer of pure tungsten armor. Past design and analysis of the T-tube divertor concept has shown that it can accommodate a heat flux up to 10MW/m2. With recent concerns that steady state or transient heat fluxes may be higher than this in the divertor region, the T-tube concept was modified so that it may accommodate higher heat fluxes.