ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE opens pilot program to authorize test reactors outside national labs
Details of the plan to test new reactor concepts under the Department of Energy’s authority but outside national laboratory boundaries—first outlined in one of the four executive orders on nuclear energy released on May 23—were just released in a request for applications issued by the DOE.
F. Cismondi, G. Aiello, S. Kecskes, G. Rampal
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 123-127
ITER Systems | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12338
Articles are hosted by Taylor and Francis Online.
Six different breeding blanket concepts will be tested in ITER under the form of six different Test Blanket Modules (TBMs). In the frame of the activities of the European TBM Consortium of Associates the Helium Cooled Pebble Bed (HCPB-TBM) and the Helium Cooled Lithium Lead (HCLL) Test Blanket Modules are developed in Karlsruhe Institute of Technology (KIT) and in CEA Saclay respectively. For each EU TBM concept, four different TBMs will be installed into one dedicated ITER equatorial port and tested during different test campaigns. The main goal of the ITER TBM program is providing DEMO relevant experimental data for the three main functions of a blanket module of a future fusion reactor, namely removing heat, breeding tritium and shielding sensitive components from radiation.The two EU TBMs share a common external structure (the so called TBM box) while featuring a different internal design of the Breeder Units (BUs), reflecting the different breeding concept. The preliminary design assessment of the two TBMs boxes is based on nuclear analyses and on the evaluation of the power produced in the BU and deposed on the TBM box structures. The preliminary thermomechanical designs have been presented and are based on steady state analyses.The TBMs will work under ITER loads, i.e. cyclic loads defined by the typical ITER pulses. Transient thermal and mechanical analyses of the two EU TBMs under a typical ITER pulse are presented in this paper, identifying the main design issues related to: structural behavior of the TBM box, codes and standard rules for assessing the TBM box integrity, TBM operational domain and related DEMO relevancy of the experimental campaign. Solutions to improve the weak structural points of the present designs are proposed, identifying the missing rules and the modelling development needs.