ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Don't forget to vote!
The 2021 ANS Election is open. This is your chance to help shape the future of your Society.
All ANS members were sent an email on February 22 with a unique username and password from Survey & Ballot Systems (SBS). If you did not receive this email or you do not have your election login information, please go to directvote.net/ANS, enter your email address that is on file with ANS, and your election login information will be emailed to you.
S. Sakakibara, K. Y. Watanabe, H. Yamada, Y. Narushima, T. Yamaguchi, K. Toi, S. Ohdachi, A. Weller, K. Tanaka, K. Narihara, K. Ida, T. Tokuzawa, K. Kawahata, A. Komori, LHD Experimental Group
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 177-185
Technical Paper | Stellarators | dx.doi.org/10.13182/FST06-A1233
Articles are hosted by Taylor and Francis Online.
This paper describes recent progress in magnetohydrodynamics (MHD) study of high-beta plasmas of the Large Helical Device. Control of the plasma aspect ratio (Ap) in the range of 6.3 to 8.3 was done in order to optimize the configuration for high-beta plasma production and to investigate the MHD characteristics. The experiments brought a maximum average beta of 4.3% at the Ap = 6.6 configuration. MHD activities in the periphery are dominantly observed in such a high-beta region, and their amplitudes increase with decreasing magnetic Reynolds number (S) and have clear dependence on the S parameter. When the plasma aspect ratio is increased, minor collapse due to the m/n = 1/1 mode without rotation occurs. It is enhanced further by the plasma current reducing magnetic shear and degrades the beta value by >50%. The results are expected to give important information on the operation regime and the future design of the helical fusion reactor and to contribute to experimental knowledge of ideal and resistive instability.