ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
A. Weller, S. Sakakibara, K. Y. Watanabe, K. Toi, J. Geiger, M. C. Zarnstorff, S. R. Hudson, A. Reiman, A. Werner, C. Nührenberg, S. Ohdachi, Y. Suzuki, H. Yamada, W7-AS Team, LHD Team
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 158-170
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1231
Articles are hosted by Taylor and Francis Online.
Substantial progress has been achieved in raising the plasma beta in stellarators and helical systems by high-power neutral beam heating, approaching reactor-relevant values. The achievement of high-beta operation is closely linked with configuration effects on the confinement and with magnetohydrodynamic (MHD) stability.The magnetic configurations of the Wendelstein 7-AS (W7-AS) stellarator and of the Large Helical Device (LHD) and their optimization for high-beta operation within the flexibility of the devices are characterized. A comparative description of the accessible operational regimes in W7-AS and LHD is given. The finite-beta effects on the flux surfaces depend on the degree of configuration optimization. In particular, a large Shafranov shift is accompanied by formation of islands and stochastic field regions as found by numerical equilibrium studies. However, the observed pressure gradients indicate some mitigation of the effects on the plasma confinement, presumably because of the high collisionality of high-beta plasmas and island healing effects (LHD). As far as operational limits by pressure-driven MHD instabilities are concerned, only weak confinement degradation effects are usually observed, even in linearly unstable regimes.The impact of the results concerning high-beta operation in W7-AS and LHD on the future stellarator program will be discussed, including the relationship to tokamak research. Some of the future key issues appear to be the following: the control of the magnetic configuration (including toroidal current control), the modification of confinement and MHD properties toward the low-collisional regime, and the compatibility of high-beta regimes with power and particle exhaust requirements to achieve steady-state operation.