ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
S. Smolentsev, N. B. Morley, M. Abdou
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 107-119
Technical Paper | doi.org/10.13182/FST06-A1226
Articles are hosted by Taylor and Francis Online.
In the dual-coolant lead lithium (DCLL) blanket, the key element is the flow channel insert (FCI) made of a silicon carbide composite (SiCf /SiC), which serves as electric and thermal insulator. The most important magnetohydrodynamic (MHD) and thermal issues of the FCI, associated with MHD flows and heat transfer in the poloidal channel of the blanket, were studied with numerical simulations using the U.S. DEMO DCLL design as a prototype. The mathematical model includes the two-dimensional momentum and induction equations for a fully developed flow and the three-dimensional (3-D) energy equation. Two FCI modifications, one with no pressure equalization openings and one with a pressure equalization slot, have been considered. The computations were performed in a parametric form, using the electric and thermal conductivity of the SiCf /SiC as parameters. Under the DEMO reactor conditions, parameters of the FCI have been identified that result in low MHD pressure drop and low heat leakage from the breeder into the helium flows. This paper also discusses the role of the pressure equalization openings, 3-D flow effects, and the effect of SiCf /SiC anisotropy.