ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Roger Raman
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 84-88
Technical Paper | doi.org/10.13182/FST06-A1223
Articles are hosted by Taylor and Francis Online.
Steady-state advanced tokamak (AT) scenarios rely on optimized density and pressure profiles to maximize the bootstrap current fraction. Under this mode of operation, the fueling system must deposit small amounts of fuel where it is needed and as often as needed, so as to compensate for fuel losses, but not to adversely alter the established density and pressure profiles. Conventional fueling methods have not demonstrated successful fueling of AT-type discharges and may be incapable of deep fueling long-pulse edge-localized-mode-free discharges in ITER. The capability to deposit fuel at any desired radial location within the tokamak would provide burn control capability through alteration of the density profile. The ability to peak the density profile would ease ignition requirements, while operating ITER with density profiles that are peaked would increase the fusion power output. An advanced fueling system should also be capable of fueling well past internal transport barriers. Compact toroid (CT) fueling has the potential to meet these needs, while simultaneously providing a source of toroidal momentum input. Experimental data needed for the design of a CT fueler for ITER could be obtained on NSTX using an existing CT injector.