ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Don't forget to vote!
The 2021 ANS Election is open. This is your chance to help shape the future of your Society.
All ANS members were sent an email on February 22 with a unique username and password from Survey & Ballot Systems (SBS). If you did not receive this email or you do not have your election login information, please go to directvote.net/ANS, enter your email address that is on file with ANS, and your election login information will be emailed to you.
H. Takenaga, Y. Miura, H. Kubo, Y. Sakamoto, H. Hiratsuka, H. Ichige, I. Yonekawa, Y. Kawamata, S. Tsuiji-Iio, R. Sakamoto, S. Kobayashi
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 76-83
Technical Paper | dx.doi.org/10.13182/FST06-A1222
Articles are hosted by Taylor and Francis Online.
Burning plasma simulation experiments were performed for burn control study on ELMy H-/L-mode plasmas and reversed shear (RS) plasmas with an internal transport barrier in JT-60U. In a burning plasma simulation scheme, two neutral beam (NB) groups were used: one that simulates alpha-particle heating and another that simulates external heating. For the alpha-particle heating simulation, the heating power proportional to the deuterium-deuterium (D-D) neutron yield rate was injected. The behavior of the part of the NB heating simulating alpha-particle heating was varied by increasing the proportional gain relating the applied power to the measured neutron yield rate in both ELMy H-mode and RS plasmas, while the part of the NB power in the role of external heating was held constant i.e., no-burn-control case. Above a certain value of the proportional gain, a runaway effect was triggered where excursive increases in the neutron yield rate and stored energy were observed. With burn control, where the stored energy was controlled at a constant value by a feedback control system using the external heating, the runaway was not triggered, and the neutron yield rate was kept at a constant value in the L-mode plasmas. Zero-dimensional calculation indicated that the runaway triggered by increasing the proportional gain well simulates the runaway triggered by improved confinement. The limitations came from differences between deuterium-tritium and D-D plasmas, such as the dominant reaction for the neutron yield and the temperature dependence of the fusion reaction rate, which were discussed together with improvement on the burning plasma simulation scheme.