ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
A. A. Haasz, J. W. Davis
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 58-67
Technical Paper | doi.org/10.13182/FST06-A1220
Articles are hosted by Taylor and Francis Online.
Both physical sputtering and chemical erosion take place in tokamaks. Physical sputtering occurs for all elements for incident particle energies greater than an energy threshold. For carbon targets the threshold difference for the three hydrogen isotopes is relatively small. In the energy range of 100 to 3000 eV, the physical sputtering yields are similar for D and T, and the H yields are lower by about a factor of 2 to 3. Chemical erosion studies of graphite due to H+ and D+ impact also show evidence of some isotopic effect - with the deuterium yield being larger. The isotopic yield ratios (D-yield/H-yield) observed in almost all of the chemical erosion measurements, including ion beams, laboratory plasma devices, and tokamaks, lie between 1 and 2. The recently measured chemical erosion yields due to tritium ions also fall in this range. (The notable exceptions are the mass-loss studies at the Max-Planck Institut für Plasmaphysik in Garching, Germany, where for energies <100 eV, the isotopic yield ratio was seen to increase from 4 to 7 with decreasing energy.) A nominal value of 1.5 ± 0.5 is suggested as the most appropriate value for the D/H yield ratio. This is fully consistent with the square root of mass dependence proposed for the modeling of chemical erosion.