ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Holtec submits partial construction permit application for SMRs at Palisades
On New Year’s Eve, Holtec International submitted Part 1 of a construction permit application to the Nuclear Regulatory Commission seeking a limited work authorization (LWA) to begin construction of a two-unit SMR-300 plant at the company’s site in Covert, Mich.
Named Pioneer-1 and -2, the twin 340-MWe pressurized water reactors would join the 777-MWe Palisades PWR that began operating in 1971, shut down in 2022, and is expected to reconnect to the grid—slightly delayed—early this year. According to Holtec’s application documents, Part 2 of its construction permit will be filed no later than mid-2027.
A. A. Haasz, J. W. Davis
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 58-67
Technical Paper | doi.org/10.13182/FST06-A1220
Articles are hosted by Taylor and Francis Online.
Both physical sputtering and chemical erosion take place in tokamaks. Physical sputtering occurs for all elements for incident particle energies greater than an energy threshold. For carbon targets the threshold difference for the three hydrogen isotopes is relatively small. In the energy range of 100 to 3000 eV, the physical sputtering yields are similar for D and T, and the H yields are lower by about a factor of 2 to 3. Chemical erosion studies of graphite due to H+ and D+ impact also show evidence of some isotopic effect - with the deuterium yield being larger. The isotopic yield ratios (D-yield/H-yield) observed in almost all of the chemical erosion measurements, including ion beams, laboratory plasma devices, and tokamaks, lie between 1 and 2. The recently measured chemical erosion yields due to tritium ions also fall in this range. (The notable exceptions are the mass-loss studies at the Max-Planck Institut für Plasmaphysik in Garching, Germany, where for energies <100 eV, the isotopic yield ratio was seen to increase from 4 to 7 with decreasing energy.) A nominal value of 1.5 ± 0.5 is suggested as the most appropriate value for the D/H yield ratio. This is fully consistent with the square root of mass dependence proposed for the modeling of chemical erosion.