ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
A. Jelea, F. Marinelli, Y. Ferro, A. Allouche, C. Brosset
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 33-42
Technical Paper | doi.org/10.13182/FST06-A1218
Articles are hosted by Taylor and Francis Online.
Quantum molecular dynamics calculations at constant temperature have been carried out in order to study the interaction between atomic oxygen and a hydrogen saturated graphite surface. It has been shown that atomic oxygen reacts at 300 K with the adsorbed hydrogen atoms to form hydroxyl radicals and water molecules. Part of these residue radicals adsorbs on the graphite forming hydroxylated structures. A study on the stability of these structures has shown that OH radical desorption begins at 500 K and formation of water molecules occurs by reaction between a desorbed hydroxyl radical and a hydrogen atom extracted from a neighboring adsorbed hydroxyl. The water molecules only very slightly interact with the graphite surface and are ejected into the gas phase.