ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
B. Plaum, G. Gantenbein, W. Kasparek, K. Schwörer, M. Grünert, H. Braune, V. Erckmann, F. Hollmann, L. Jonitz, H. Laqua, G. Michel, F. Noke, F. Purps, A. Bruschi, S. Cirant, F. Gandini, A. G. A. Verhoeven, ECRH Groups
Fusion Science and Technology | Volume 50 | Number 1 | July 2006 | Pages 1-14
Technical Paper | doi.org/10.13182/FST06-A1216
Articles are hosted by Taylor and Francis Online.
This paper reports the results of the high-power tests of a remote-steering-launcher mock-up at 140 GHz, which were performed at the electron cyclotron resonance heating installation for the future stellarator Wendelstein 7-X (W7-X) at Max-Planck-Institut für Plasmaphysik, Greifswald. The mock-up test system consists of a 6.62-m-long square corrugated waveguide with a steerable optic at the entrance and various diagnostics at the exit of the waveguide. A straight launcher and a version with two integrated miter bends were investigated.The ohmic loss of the waveguide was measured via the temperature increase of the waveguide wall and was used to calibrate the calculated angular dependence of the total ohmic losses of the waveguide. Short-pulse radiation pattern measurements with thermographic recording show high beam quality and confirm the steering range of -12...12 deg. The version with two miter bends produces similar results but with an increased level of side lobes.Although the tests were performed under atmospheric pressure, no arcing was observed in the straight waveguide. In the version with the miter bends, however, arcing limited the power and pulse length.