ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Researchers report fastest purification of astatine-211 needed for targeted cancer therapy
Astatine-211 recovery from bismuth metal using a chromatography system. Unlike bismuth, astatine-211 forms chemical bonds with ketones.
In a recent study, Texas A&M University researchers have described a new process to purify astatine-211, a promising radioactive isotope for targeted cancer treatment. Unlike other elaborate purification methods, their technique can extract astatine-211 from bismuth in minutes rather than hours, which can greatly reduce the time between production and delivery to the patient.
“Astatine-211 is currently under evaluation as a cancer therapeutic in clinical trials. But the problem is that the supply chain for this element is very limited because only a few places worldwide can make it,” said Jonathan Burns, research scientist in the Texas A&M Engineering Experiment Station’s Nuclear Engineering and Science Center. “Texas A&M University is one of a handful of places in the world that can make astatine-211, and we have delineated a rapid astatine-211 separation process that increases the usable quantity of this isotope for research and therapeutic purposes.”
The researchers added that this separation method will bring Texas A&M one step closer to being able to provide astatine-211 for distribution through the Department of Energy’s Isotope Program’s National Isotope Development Center as part of the University Isotope Network.
Details on the chemical reaction to purify astatine-211 are in the journal Separation and Purification Technology.
H. L. Wilkens, J. Gunther, M. P. Mauldin, A. Nikroo, J. R. Wall, D. R. Wall, R. J. Wallace
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 846-850
Technical Paper | Target Fabrication | dx.doi.org/10.13182/FST06-A1212
Articles are hosted by Taylor and Francis Online.
The process of making multi-layered depleted uranium (DU) and gold "cocktail" hohlraums is being developed in a sputter-coater designed and assembled at General Atomics. These elements have been chosen to increase the hohlraum wall albedo, targeting the composition that results in the highest hohlraum efficiency. Rather than co-sputtering the cocktail constituents as was done previously, the approach taken in this work is to sputter alternating multiple thin layers of DU and gold. The intended outcome of creating a multi-layered structure is to encapsulate the DU in gold, thus reducing or perhaps preventing rapid oxidation of uranium, a known problem in the co-sputtered materials. Residual stress in coatings has been reduced to sufficiently low levels by optimizing deposition pressure allowing fabrication of free-standing cylinders and foils. Characterization of this type of sandwich material is difficult due to the fact that the cocktail region consists of buried interfaces, though promising results from Auger depth profiling show that the materials have sufficiently low oxygen content (4 at. %) as well as the targeted composition.