ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. P. Mauldin, A. L. Greenwood, M. N. Kittelson, C. H. Shearer, J. N. Smith, Jr., D. M. Woodhouse
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 842-845
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1211
Articles are hosted by Taylor and Francis Online.
Fast ignition is a concept that is being actively investigated in the HED community. The fast ignition targets described here are highly precise targets composed of a small glow discharge polymer (GDP) shell (~860 m diameter) mounted on a gold hyperboloid tipped cone. The process of creating these targets is composed of several steps. The first step consists of machining a copper cone that is then plated with a layer of gold approximately 120 m thick. Next, a hole is machined in a hollow GDP shell that will later be mounted on the gold gone. After the hole of this shell has been measured, the coated cone is machined to shape and to include a shelf so that the shell will sit at the desired location in relation to the tip of the cone. Finally, the copper mandrel is etched away from the gold and the target is assembled with the shell glued into place. At every step of this process, parts must be made and kept within tight specifications to meet the target requirements, not the least of which is that after assembly the shell center must be a specified distance from the gold cone tip with a tolerance of less than 10 m.