ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. Bednarczyk, I. Geoffray, G. Perron, O. Legaie, Ph. Baclet
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 813-817
Technical Paper | Target Fabrication | doi.org/10.13182/FST49-813
Articles are hosted by Taylor and Francis Online.
In the last years, many applications of pulsed laser in precision machining have been demonstrated. Short pulse durations (nanosecond, picosecond and femtosecond) and short wavelength (U.V. and visible) create small heat-affected zones during the interaction with material such as polymers or metals. In the case of excimer lasers, energy carried by ultra-violet photon is sufficient to break apart molecular bonds without thermal effects, particularly in the case of the 3.7 eV C=H bond. All these properties facilitate high spatial resolution and high accuracy processes. This is especially true in the case of high absorbing carbon-hydrogen polymers.An excimer multipulses engraving technique using time-resolved surface ablation was developped using our home-made laser micro-machining work station. This four-axis work station is composed of motor-controlled translation and rotation stages. This experimental set-up was designed to pattern 3D object by the mean of the association of rotative and translative motions. Sinusoidal recording on polystyrene, polyimide and GDP polymers about ten micrometers spatial frequency and a few micrometers amplitude were performed using binary masks with particular shapes.Applications to hydrodynamics modes growth (which have detrimental effect on fusion burn in the "Megajoule laser" LMJ CH-GDP -shell) measurements will be performed on OMEGA laser facility.