ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Michael McElfresh, Janelle Gunther, Craig Alford, Eric Fought, Robert Cook, Abbas Nikroo, Hongwei Xu, Jason C. Cooley, Robert D. Field, Robert E. Hackenberg, Art Nobile
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 786-795
Technical Paper | Target Fabrication | doi.org/10.13182/FST49-786
Articles are hosted by Taylor and Francis Online.
The sputtering of beryllium (Be) has been used at LLNL for nearly 30 years in the fabrication of laser targets. Several years ago the prospect of using sputtering to fabricate spherical Be capsules for National Ignition Facility (NIF) targets began to be explored and a basic strategy was developed that involved sputtering down onto plastic mandrels bouncing in a pan. While this appears to be very straightforward in principle, in practice sputtering has been used almost exclusively to make thin films (< 1 micron) on flat substrates. Thick films pose a significant challenge for sputtering while materials on spherical substrates are essentially unexplored. More recently, based on computational results, the point design for the first NIF ignition target capsule was specified as a Be capsule with Cu-doped layers of specific thickness, each layer with a different concentration of copper. While the work described here was motivated by the need to make these layered capsules, progress has been made in developing a more complete metallurgical understanding of the materials that are fabricated and the relationship between the sputter processing and microstructure of these spherical samples.