ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
K. C. Chen, R. C. Cook, H. Huang, S. A. Letts, A. Nikroo
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 750-756
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1196
Articles are hosted by Taylor and Francis Online.
One of the current capsule designs for achieving ignition on the National Ignition Facility (NIF) is a 2 mm diameter graded Ge-doped CH shell that has a 160 m thick wall. The Ge doping is not uniform, but rather is in radial steps. This graded Ge-doped design allows rougher surface finish than the original undoped CH design, thus has a less stringent surface roughness requirement.We selected quality mandrels by coating dozens of mandrel batches to ~70 m thickness to amplify submicrometer defects on the mandrels and successively removed inferior batches. The Ge-doped CH layers are made by introducing (CH3)4Ge to the gas stream. The doping concentrations were determined by performing trial runs and were characterized by X-ray fluorescence and quantitative radiographic analyses, with good agreement between the methods demonstrated.The precise layer thickness and Ge concentrations were determined by a non-destructive quantitative contact radiograph. The as-deposited average layer thicknesses of the shells were 9.5 ± 1.1 m for inner undoped CH layer, followed by a 47.1 ± 0.5 m thick 0.83 ± 0.09 at. % Ge-doped CH, 10.0 ± 0.4 m thick 0.38 ± 0.04 at. % Gedoped CH and then 89.2 ± 0.5 m of undoped CH.The atomic force microscope derived power spectrum of the shell meets the new NIF standard. The shells had a root-mean-square surface roughness of ~ 24 nm (modes 100-1000). The few surface flaws are isolated domes ~1 m tall and 20 m in diameter.The PAMS mandrels were successfully removed by pyrolysis at 305°C for 10-20 h. After pyrolysis, the diameter and wall shrank 0.4% and 5.7%, respectively. Except for the outer undoped CH layer, which was 5.8 m less than the design specification, the average thicknesses of the three other layers met the NIF design specification after pyrolysis. The averages of the Ge doping concentrations were within the tolerance limits. The shell's inner surface has root-mean-square roughness of less than 6.5 nm.