ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
A. K. Knight, D. R. Harding
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 728-736
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1193
Articles are hosted by Taylor and Francis Online.
Vapor deposited PMDA-ODA poly(amic acid) and polyimide capsules have been produced with desirable material properties (high tensile strength, permeability, and elastic modulus), but the contributions of the process steps and their dependence on external control variables has not been investigated. We have combined numerical simulations with experimental measurements to model the steps of the vapor deposition process including monomer sublimation, vapor transport to the bounce pan, and poly-condensation on the substrate surfaces. The measured sublimation rates of PMDA and ODA monomer at temperatures that yielded stoichiometric poly(amic acid) (10-6 Torr deposition) are 1.2 × 10-7 gm/s PMDA (at 153° C) and 6.3 × 10-10 gm/s ODA (at 126° C) - a 180:1 PMDA:ODA molar ratio. These provide initial boundary conditions to simulate the thermal environment and vapor transport inside the deposition chamber at 1 × 10-2 Torr. A disproportionate loss of PMDA gas during transport to a stationary mandrel is shown by the numerical model to reduce the monomer stoichiometry to 9:1 PMDA:ODA. The transport-based loss depends strongly on the geometry of the substrate support, as is shown by modifying the substrate to change the flow pattern, which reduces this ratio to 1:1 PMDA:ODA above the mandrel. A separate model of the kinetics of monomer deposition and polymerization reactions was developed to correlate the gas concentrations above the substrate with the elemental concentrations comprising the film. This basic model was tested with rate constants based on reaction probabilities of one and equal deposition rates for two monomers in the absence of measured values and is sensitive to changes in vapor stoichiometry.