ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Nobukatsu Nemoto, Keiji Nagai, Yoshitaka Ono, Kei Tanji, Tomoya Tanji, Mitsuo Nakai, Takayoshi Norimatsu
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 695-700
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1188
Articles are hosted by Taylor and Francis Online.
This paper deals with the development of materials without volume change in the formation of uniform low density foam capsules with fine structures. Two monomers, i.e., 5-(4-vinylbenzyl)oxymethyl-5-methyl-1,3-dioxane-2-thione (M1) and 4-vinylphenyloxirane (M2), were prepared as the comonomers polymerized with styrene. Polystyrene-based copolymers using styrene and M1 or M2 were prepared by free radical copolymerization using azobis(isobutyronitrile) (AIBN) as an initiator. The solutions of the obtained polystyrene-based copolymers in benzene/dichloromethane mixture or 4-chlorotoluene were gelated by the addition of a cationic initiator, which caused cross-linking via ring-opening polymerization of the pendant cyclic moieties. The gel was transformed into an aerogel by exchanging solvent to 2-propanol, and removal of 2-propanol using supercritical CO2. SEM images of a cross sectional view of the aerogel indicated that sub-micrometer voids were distributed randomly, and most of parts look filled bulk morphology. The density of the gel obtained from the present polystyrene-based copolymers was estimated to be 200 mg/cm , which implies existence of vacancies without observation in the SEM image, suggesting the extremely fine cell structure.