ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
N. G. Borisenko, I. V. Akimova, A. I. Gromov, A. M. Khalenkov, Yu. A. Merkuliev, V. N. Kondrashov, J. Limpouch, J. Kuba, E. Krousky, K. Masek, W. Nazarov, V. G. Pimenov
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 676-685
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1185
Articles are hosted by Taylor and Francis Online.
Fabrication methods for low-density fine-structure (cell size < 1 m) 3-D networks of cellulose triacetate (TAC) are developed. Target densities ranged 4-20 mg/cm3, similar polymer structures were produced both with no load and with high-Z cluster dopant with concentration up to 30%. Foams of varying density down to 0.25 plasma critical density at the third harmonic of iodine laser wavelength are supplied for laser shots. Closed-cell and 3-D network structures are considered and monitored as the means of thermal and radiation control in plasma. In comparative foam-and-foil laser irradiation experiments on PALS (Czech, Prague) laser facility the presently developed TAC targets were used along with earlier reported TMPTA (trimethylol propane triacrilate) and agar foams. Radiation transport and hydrodynamic wave velocities proved to be similar in TAC and TMPTA volume structures both having the form of regular 3-D networks, but differed a lot when TAC was compared to agar foams. Radiation transport during laser pulse in TAC doped with Cu-clusters was faster then in TAC with no dopant, whereas plasma from TAC doped with Cu-clusters cooled down quicker then with no clusters. High-Z cluster dopant is effective tool to control energy transport in underdense plasma.