ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
N. G. Borisenko, I. V. Akimova, A. I. Gromov, A. M. Khalenkov, Yu. A. Merkuliev, V. N. Kondrashov, J. Limpouch, J. Kuba, E. Krousky, K. Masek, W. Nazarov, V. G. Pimenov
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 676-685
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1185
Articles are hosted by Taylor and Francis Online.
Fabrication methods for low-density fine-structure (cell size < 1 m) 3-D networks of cellulose triacetate (TAC) are developed. Target densities ranged 4-20 mg/cm3, similar polymer structures were produced both with no load and with high-Z cluster dopant with concentration up to 30%. Foams of varying density down to 0.25 plasma critical density at the third harmonic of iodine laser wavelength are supplied for laser shots. Closed-cell and 3-D network structures are considered and monitored as the means of thermal and radiation control in plasma. In comparative foam-and-foil laser irradiation experiments on PALS (Czech, Prague) laser facility the presently developed TAC targets were used along with earlier reported TMPTA (trimethylol propane triacrilate) and agar foams. Radiation transport and hydrodynamic wave velocities proved to be similar in TAC and TMPTA volume structures both having the form of regular 3-D networks, but differed a lot when TAC was compared to agar foams. Radiation transport during laser pulse in TAC doped with Cu-clusters was faster then in TAC with no dopant, whereas plasma from TAC doped with Cu-clusters cooled down quicker then with no clusters. High-Z cluster dopant is effective tool to control energy transport in underdense plasma.