ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
N. G. Borisenko, I. V. Akimova, A. I. Gromov, A. M. Khalenkov, Yu. A. Merkuliev, V. N. Kondrashov, J. Limpouch, J. Kuba, E. Krousky, K. Masek, W. Nazarov, V. G. Pimenov
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 676-685
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1185
Articles are hosted by Taylor and Francis Online.
Fabrication methods for low-density fine-structure (cell size < 1 m) 3-D networks of cellulose triacetate (TAC) are developed. Target densities ranged 4-20 mg/cm3, similar polymer structures were produced both with no load and with high-Z cluster dopant with concentration up to 30%. Foams of varying density down to 0.25 plasma critical density at the third harmonic of iodine laser wavelength are supplied for laser shots. Closed-cell and 3-D network structures are considered and monitored as the means of thermal and radiation control in plasma. In comparative foam-and-foil laser irradiation experiments on PALS (Czech, Prague) laser facility the presently developed TAC targets were used along with earlier reported TMPTA (trimethylol propane triacrilate) and agar foams. Radiation transport and hydrodynamic wave velocities proved to be similar in TAC and TMPTA volume structures both having the form of regular 3-D networks, but differed a lot when TAC was compared to agar foams. Radiation transport during laser pulse in TAC doped with Cu-clusters was faster then in TAC with no dopant, whereas plasma from TAC doped with Cu-clusters cooled down quicker then with no clusters. High-Z cluster dopant is effective tool to control energy transport in underdense plasma.