ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
J. F. Hund, R. R. Paguio, C. A. Frederick, A. Nikroo, M. Thi
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 669-675
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1184
Articles are hosted by Taylor and Francis Online.
A variety of silica, metal oxide, and metal doped aerogels are being developed for use as laser target materials. Silica aerogels have been produced with controlled densities as low as 5 mg/cc, and have been produced as bulk molds. Recently, 100 mg/cc small beads and hollow shells have also been fabricated using microencapsulation techniques. Metal oxide aerogels such as tantalum oxide (Ta2O5) and tin oxide (SnO2) are two other low-density materials that have been fabricated. Aerogels with embedded metal particles are also of interest and several methods for producing these composite aerogels are being explored. Each method limits excessive aggregation of the metal so that the end product has a uniform loading of small metal particles. Ion implantation is being investigated as another method that allows more control of the metal doping. With ion implantation the metal dopant can be placed in a narrow distribution beneath the surface of an aerogel, and initial results of 1 MeV Au- implanted in 67 mg/cc SiO2 are described.