ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
C. A. Frederick, R. R. Paguio, A. Nikroo, J. H. Hund, O. Acennas, M. Thi
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 657-662
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1182
Articles are hosted by Taylor and Francis Online.
Resorcinol Formaldehyde (R/F) foam has been used in the fabrication of direct drive shell targets for Inertial Fusion Confinement (ICF) experiments at the University of Rochester's Laboratory for Laser Energetics (LLE). Recent cryogenic experiments at LLE using R/F shells have shown the necessity of larger pore foam compared to the standard R/F formulation. In this paper, we report controlling the pore size of R/F foam with concomitant control of the gelation time, which is crucial for successful shell fabrication. The "standard" formulation, with pores of <100 nm, was modified by decreasing the base catalyst to resorcinol concentration ratio creating a large pore R/F foam (~ >0.5 m) through reaction limited aggregation. However, this formulation decreased the gelation time, which decreased the yield of shells with proper wall uniformity (~ 30%) to an unacceptable level of <1%. We developed a technique to achieve control over the gelation time, while keeping the large pore characteristics of R/F to improve shell non-uniformity and increasing the yield to an acceptable level. We also developed a new technique for large pore formation involving changes to the acid catalyst concentration. The effects of this new formulation on the wall uniformity of shells are discussed. The pore distributions obtained using these new R/F foams were characterized using a variety of techniques, including electron microscopy, nitrogen gas adsorption, visible spectroscopy, and small angle x-ray scattering and compared to the standard small pore formulation.