ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
C. A. Frederick, R. R. Paguio, A. Nikroo, J. H. Hund, O. Acennas, M. Thi
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 657-662
Technical Paper | Target Fabrication | doi.org/10.13182/FST06-A1182
Articles are hosted by Taylor and Francis Online.
Resorcinol Formaldehyde (R/F) foam has been used in the fabrication of direct drive shell targets for Inertial Fusion Confinement (ICF) experiments at the University of Rochester's Laboratory for Laser Energetics (LLE). Recent cryogenic experiments at LLE using R/F shells have shown the necessity of larger pore foam compared to the standard R/F formulation. In this paper, we report controlling the pore size of R/F foam with concomitant control of the gelation time, which is crucial for successful shell fabrication. The "standard" formulation, with pores of <100 nm, was modified by decreasing the base catalyst to resorcinol concentration ratio creating a large pore R/F foam (~ >0.5 m) through reaction limited aggregation. However, this formulation decreased the gelation time, which decreased the yield of shells with proper wall uniformity (~ 30%) to an unacceptable level of <1%. We developed a technique to achieve control over the gelation time, while keeping the large pore characteristics of R/F to improve shell non-uniformity and increasing the yield to an acceptable level. We also developed a new technique for large pore formation involving changes to the acid catalyst concentration. The effects of this new formulation on the wall uniformity of shells are discussed. The pore distributions obtained using these new R/F foams were characterized using a variety of techniques, including electron microscopy, nitrogen gas adsorption, visible spectroscopy, and small angle x-ray scattering and compared to the standard small pore formulation.