ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Researchers report fastest purification of astatine-211 needed for targeted cancer therapy
Astatine-211 recovery from bismuth metal using a chromatography system. Unlike bismuth, astatine-211 forms chemical bonds with ketones.
In a recent study, Texas A&M University researchers have described a new process to purify astatine-211, a promising radioactive isotope for targeted cancer treatment. Unlike other elaborate purification methods, their technique can extract astatine-211 from bismuth in minutes rather than hours, which can greatly reduce the time between production and delivery to the patient.
“Astatine-211 is currently under evaluation as a cancer therapeutic in clinical trials. But the problem is that the supply chain for this element is very limited because only a few places worldwide can make it,” said Jonathan Burns, research scientist in the Texas A&M Engineering Experiment Station’s Nuclear Engineering and Science Center. “Texas A&M University is one of a handful of places in the world that can make astatine-211, and we have delineated a rapid astatine-211 separation process that increases the usable quantity of this isotope for research and therapeutic purposes.”
The researchers added that this separation method will bring Texas A&M one step closer to being able to provide astatine-211 for distribution through the Department of Energy’s Isotope Program’s National Isotope Development Center as part of the University Isotope Network.
Details on the chemical reaction to purify astatine-211 are in the journal Separation and Purification Technology.
D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, S. J. Verbridge, M. D. Wittman, A. Warrick, T. Brown, W. Seka
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 616-625
Technical Paper | Target Fabrication | dx.doi.org/10.13182/FST49-616
Articles are hosted by Taylor and Francis Online.
Backlit optical shadowgraphy is the primary diagnostic for D2 ice layer characterization of cryogenic targets for the OMEGA Laser System at the Laboratory for Laser Energetics (LLE). Reflection and refraction of light passing through the ice layer produce characteristic rings. The position of the most prominent of the shadowgraph rings, known as the bright ring, can be resolved to ~0.1-pixel rms, corresponding to about 0.12 m for typical LLE target shadowgraphs. Measurement of the bright ring position in conjunction with ray-trace model predictions determines the ice layer thickness and the Fourier-mode spectrum of the ice roughness for that view. The LLE target characterization stations use two camera angles and target rotation to record target shadowgraphs from many different views. Combining these views allows construction of a 3-D ice layer representation, an estimation of the global surface roughness, and a determination of a Legendre-mode spectrum suitable for implosion modeling. The standard operating procedure is to construct a 3-D ice layer representation using the analysis of 48 separate shadowgraphic views. The 3-D ice surface is then decomposed in terms of spherical harmonics, allowing the determination of low-mode number (l 8 to 10) elements of a Legendre-mode power spectrum. Higher-mode number elements of the Legendre power spectrum are determined by mapping the Fourier-mode power spectrum averaged over all views