ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
W. Kasparek, R. Van Den Braber, N. Doelman, E. Fritz, V. Erckmann, F. Hollmann, G. Michel, F. Noke, F. Purps, W. Bongers, B. Krijger, M. Petelin, L. Lubyako, A. Bruschi, ECRH Groups at IPP Greifswald and IPF Stuttgart
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 729-741
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST11-A11738
Articles are hosted by Taylor and Francis Online.
Electron cyclotron resonance heating (ECRH) systems for next-step large fusion devices operate in continuous wave power in the multimegawatt range. The unique feature of narrow and well-localized power deposition assigns a key role to ECRH for different tasks, such as plasma start-up, electron heating, current drive, magnetohydrodynamic (MHD) control and profile shaping. The integration of high-power microwave diplexers in the transmission lines will improve the flexibility and efficiency while simultaneously reducing the complexity of large ECRH systems. They can serve as power or beam combiners, as slow and fast directional switches to toggle the power from continuously operating gyrotrons between two launchers, and as discriminators of low-power electron cyclotron emission (ECE) signals from high-power ECRH using a common transmission line and antenna. Among various design options a resonant diplexer with a narrow resonance was selected for application at ASDEX Upgrade. The design is driven by the specific physics requirements for MHD control experiments and possible use for line-of-sight ECE. The compact, waveguide-compatible design features a feedback-controlled mirror drive for tracking of the resonator to the gyrotron frequency. High-power, long-pulse tests were performed with the 140-GHz ECRH system for the stellarator W7-X. Results on the transmission characteristics, power combination, and stationary and controlled distribution of the input power to two outputs are presented. The qualification for in-line ECE was investigated.