ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
F. Gandini, T. S. Bigelow, B. Becket, J. B. Caughman, D. Cox, C. Darbos, T. Gassmann, M. A. Henderson, O. Jean, K. Kajiwara, N. Kobayashi, C. Nazare, Y. Oda, T. Omori, D. Purohit, D. A. Rasmussen, D. M. S. Ronden, G. Saibene, K. Sakamoto, M. A. Shapiro, K. Takahashi, R. J. Temkin
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 709-717
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST05-38
Articles are hosted by Taylor and Francis Online.
The transmission line (TL) subsystem associated with the ITER electron cyclotron heating and current drive system has reached the conceptual design maturity. At this stage the responsibility of finalizing the design has been transferred from the ITER Organization to the U.S. Domestic Agency. The purpose of the TL is to transmit the microwaves generated by the 170-GHz gyrotrons installed in the radio-frequency building to the launchers located in one equatorial and four upper tokamak ports. Each TL consists of evacuated HE11 waveguides, direct-current breaks, power monitors, mitre bends, polarizers, switches, loads, and pumping sections and will have a typical length that ranges from 100 to 160 m. Overall transmission efficiency could be as high as 92% depending on the specific path between a given gyrotron and launcher. All components are required to be 2-MW compatible, and their layout and organization have been optimized for simplifying the maintenance accessibility and monitoring the primary tritium barrier integrity. Two different TL layouts are at the moment under study, to accommodate the two alternative options for the European sources: four 2-MW units or eight 1-MW units. In this paper the actual design is presented and the technical requirements are discussed.