ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
F. Gandini, T. S. Bigelow, B. Becket, J. B. Caughman, D. Cox, C. Darbos, T. Gassmann, M. A. Henderson, O. Jean, K. Kajiwara, N. Kobayashi, C. Nazare, Y. Oda, T. Omori, D. Purohit, D. A. Rasmussen, D. M. S. Ronden, G. Saibene, K. Sakamoto, M. A. Shapiro, K. Takahashi, R. J. Temkin
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 709-717
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST05-38
Articles are hosted by Taylor and Francis Online.
The transmission line (TL) subsystem associated with the ITER electron cyclotron heating and current drive system has reached the conceptual design maturity. At this stage the responsibility of finalizing the design has been transferred from the ITER Organization to the U.S. Domestic Agency. The purpose of the TL is to transmit the microwaves generated by the 170-GHz gyrotrons installed in the radio-frequency building to the launchers located in one equatorial and four upper tokamak ports. Each TL consists of evacuated HE11 waveguides, direct-current breaks, power monitors, mitre bends, polarizers, switches, loads, and pumping sections and will have a typical length that ranges from 100 to 160 m. Overall transmission efficiency could be as high as 92% depending on the specific path between a given gyrotron and launcher. All components are required to be 2-MW compatible, and their layout and organization have been optimized for simplifying the maintenance accessibility and monitoring the primary tritium barrier integrity. Two different TL layouts are at the moment under study, to accommodate the two alternative options for the European sources: four 2-MW units or eight 1-MW units. In this paper the actual design is presented and the technical requirements are discussed.