ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Y. M. Hu, Y. J. Hu, Y. R. Lin-Liu
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 684-689
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST11-A11734
Articles are hosted by Taylor and Francis Online.
A fully relativistic theory of electron cyclotron current drive (ECCD) efficiency based on Green's function techniques is considered. Numerical calculations of the current drive efficiency in a uniform magnetic field are performed. The numerical results with parameter regimes relevant to ITER operation are compared with those of two simplified models in which the electron-electron Coulomb collision operator is respectively approximated by its high-velocity limit and a semirelativistic form. Our results indicate that the semirelativistic approximation of the collision operator should be appropriate for modeling the ECCD efficiency under ITER conditions.