ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
V. F. Shevchenko, M. De Bock, S. J. Freethy, A. N. Saveliev, R. G. L. Vann
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 663-669
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST10-137
Articles are hosted by Taylor and Francis Online.
Angular scanning of electron Bernstein wave emission (EBE) has been conducted in MAST. From EBE measurements over a range of viewing angles, the angular position and orientation of the B-X-O mode conversion (MC) window can be estimated, giving the pitch angle of the magnetic field in the MC layer. The radial position of the corresponding MC layer is found from Thomson scattering measurements. Measurements at several frequencies can provide a pitch angle profile. Results of pitch angle profile reconstruction from EBE measurements are presented in comparison with motional Stark effect measurements. Microwave imaging of the B-X-O MC window is proposed as an alternative to angular scanning. The proposed scheme is based on an imaging phased array of antennas allowing the required angular resolution. Image acquisition time is much shorter than magnetohydrodynamic (MHD) time scales so the EBE imaging can be used for pitch angle measurements even in the presence of MHD activity.