ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
V. F. Shevchenko, M. De Bock, S. J. Freethy, A. N. Saveliev, R. G. L. Vann
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 663-669
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST10-137
Articles are hosted by Taylor and Francis Online.
Angular scanning of electron Bernstein wave emission (EBE) has been conducted in MAST. From EBE measurements over a range of viewing angles, the angular position and orientation of the B-X-O mode conversion (MC) window can be estimated, giving the pitch angle of the magnetic field in the MC layer. The radial position of the corresponding MC layer is found from Thomson scattering measurements. Measurements at several frequencies can provide a pitch angle profile. Results of pitch angle profile reconstruction from EBE measurements are presented in comparison with motional Stark effect measurements. Microwave imaging of the B-X-O MC window is proposed as an alternative to angular scanning. The proposed scheme is based on an imaging phased array of antennas allowing the required angular resolution. Image acquisition time is much shorter than magnetohydrodynamic (MHD) time scales so the EBE imaging can be used for pitch angle measurements even in the presence of MHD activity.