ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. E. Austin
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 647-650
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST11-A11728
Articles are hosted by Taylor and Francis Online.
Work has been done to assess the ability of electron cyclotron emission (ECE) measurements to resolve rotating magnetohydrodynamic (MHD) islands in the high-temperature plasmas of ITER. In ITER discharges the high electron temperature will cause relativistic broadening of ECE frequencies, significantly larger than experienced in current magnetic fusion devices. The broadening will result in spatial averaging of measured Te oscillations and hence a reduction of resolution. This effect is quantified by using a code that calculates the EC absorption and emission for an ITER scenario, and by using simulated Te data the reduction in amplitude is determined. It is found that the reduction is modest and that it should be possible to measure MHD islands of 1 cm and larger.