The primary objectives of control are somewhat different from those of much of fusion plasma physics. Magnetic fusion physics has historically focused on understanding the physics of plasmas in magnetic confinement devices, whereas fusion plasma control seeks to capitalize on the understanding already gained to cause the system (fusion device plus plasma) to behave in certain desirable ways. For example, early uses of plasma control in fusion devices had simple goals such as extending the survival of discharges by minimizing plasma-wall interaction or by regulating density. Present applications are

primarily aimed at achieving conditions with better potential fusion performance or conditions under which fusion plasmas can be more easily studied. The demanding performance requirements and significant constraints expected on control of future fusion reactors suggest that plasma control is a critical enabling technology for progress toward commercial fusion power. A greater understanding of control techniques for fusion plasmas and a more widespread use of these techniques in existing devices are required in order to develop the solutions needed. [first paragraph from extended abstract]