ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Géraldine Moll, Philippe Baclet, Michel Martin
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 574-580
Technical Paper | Target Fabrication | doi.org/10.13182/FST49-574
Articles are hosted by Taylor and Francis Online.
This paper is an update of the thermal and hydrodynamic simulations of cryogenic target for the laser MegaJoule (LMJ). Depending on the kind of study, 2-D axi-symmetric or 3-D models are used for those numerical simulations with FLUENT, a Computational Fluid Dynamics (CFD) code.Results show the response of the hohlraum assembly and the DT ice layer profile to sinusoidal modulation of the temperature of the cooling rings. aWe have also calculated that no change in the DT ice was observed with variations up to +/-2 mK on thermal shroud. Results of flux absorption during laser alignment are reported here.Taking in account the cavity real geometric configuration, the seven gas-areas cavity appears to be the most effective to counteract convection effects. Other ways to counteract those effects have been explored like heating modulation in the central area on the outer surface of the gold cavity, or uniform heating in this area with auxiliary heating on the lower cooling ring. More, the thermal response of DT ice when it is submitted to a quenching (in order to obtain the LMJ target gas density specification) is shown here.