ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Géraldine Moll, Philippe Baclet, Michel Martin
Fusion Science and Technology | Volume 49 | Number 4 | May 2006 | Pages 574-580
Technical Paper | Target Fabrication | doi.org/10.13182/FST49-574
Articles are hosted by Taylor and Francis Online.
This paper is an update of the thermal and hydrodynamic simulations of cryogenic target for the laser MegaJoule (LMJ). Depending on the kind of study, 2-D axi-symmetric or 3-D models are used for those numerical simulations with FLUENT, a Computational Fluid Dynamics (CFD) code.Results show the response of the hohlraum assembly and the DT ice layer profile to sinusoidal modulation of the temperature of the cooling rings. aWe have also calculated that no change in the DT ice was observed with variations up to +/-2 mK on thermal shroud. Results of flux absorption during laser alignment are reported here.Taking in account the cavity real geometric configuration, the seven gas-areas cavity appears to be the most effective to counteract convection effects. Other ways to counteract those effects have been explored like heating modulation in the central area on the outer surface of the gold cavity, or uniform heating in this area with auxiliary heating on the lower cooling ring. More, the thermal response of DT ice when it is submitted to a quenching (in order to obtain the LMJ target gas density specification) is shown here.