ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
David Petti, Kathryn McCarthy
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 1-23
Technical Paper | doi.org/10.13182/FST00-A117
Articles are hosted by Taylor and Francis Online.
Magnetic fusion energy has the potential for superior safety and environmental (S&E) characteristics relative to other energy options, which is one of the main reasons for developing fusion power. Excellent progress has been made in understanding the nature of the S&E concerns associated with fusion power and in demonstrating the S&E potential of fusion. Over the past 10 yr, U.S. fusion S&E activities have been largely focused on the International Thermonuclear Experimental Reactor (ITER). The design of ITER is such that the hazards addressed are similar to those of a future fusion power plant; hence, many of the safety issues addressed by ITER are relevant to commercial fusion power plants. This paper reviews the progress and accomplishments in fusion S&E activities performed largely in support of ITER over the past decade and discusses future directions in fusion safety design criteria development and implementation; characterization of the radioactive and hazardous materials in fusion and the potential energy sources that could mobilize those materials during an accident; integrated state-of-the-art safety and risk analysis tools, methods, and results; and development of environmental design criteria for radioactive and hazardous fusion waste minimization as well as the evaluation of recycle/reuse potential of fusion materials.