ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
H. Reimerdes, R. J. Buttery, A. M. Garofalo, Y. In, R. J. La Haye, M. J. Lanctot, M. Okabayashi, J.-K. Park, M. J. Schaffer, E. J. Strait, F. A. Volpe
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Pages 572-585
Lecture | Fourth ITER International Summer School (IISS2010) | doi.org/10.13182/FST11-A11698
Articles are hosted by Taylor and Francis Online.
Tokamak plasmas can be sensitive to external nonaxisymmetric magnetic perturbations that are several orders of magnitude smaller than the axisymmetric field. These perturbations, which are usually undesired and are referred to as error fields, can limit operation by braking the plasma rotation until an instability such as a tearing mode, a resistive wall mode, or an error field-driven locked mode leads to an unacceptable confinement degradation or a disruption. Auxiliary heating can have two competing effects: On one hand higher leads to a degradation of the error field tolerance through plasma amplification and stronger braking, and on the other hand higher toroidal rotation can tolerate a higher magnetic braking torque. A widely used technique to detect and correct error fields is based on the characteristic density dependence of the error field tolerance in ohmic plasmas. An alternative technique is based on the measurable plasma amplification of the error field in high- plasmas. However, the detection and correction of error fields in ITER will require a modification of the present techniques in order to avoid disruptions and deal with insufficient plasma amplification of the error field at low , before the full set of auxiliary heating systems will be available. The adaptation of current techniques to address these concerns is likely, but an experimental demonstration as well as an improved physics basis is needed and remains the subject of current research.