ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
S. C. Jardin
Fusion Science and Technology | Volume 59 | Number 3 | April 2011 | Pages 519-525
Lecture | Fourth ITER International Summer School (IISS2010) | doi.org/10.13182/FST11-A11693
Articles are hosted by Taylor and Francis Online.
A simple rigid plasma model is used to show that axisymmetric plasma instabilities (in two dimensions) will occur on a resistive time scale and do not depend on the plasma mass. This is the justification for ignoring the inertial term in two-dimensional studies of plasma shape control and vertical stability. In three dimensions, it is not normally possible to ignore the inertial terms when computing plasma instabilities. This results in a stiff system of equations (with multiple time scales) in which the driving terms causing plasma instabilities are small compared with the stable compressive terms. Techniques are described for implicit time integration and for representing the vector fields in a way to facilitate obtaining accurate solutions for plasma instabilities when a strong background magnetic field is present.